Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
J Med Virol ; 96(4): e29607, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628076

ABSTRACT

Hepatitis B e antigen (HBeAg) seropositivity during the natural history of chronic hepatitis B (CHB) is known to coincide with significant increases in serum and intrahepatic HBV DNA levels. However, the precise underlying mechanism remains unclear. In this study, we found that PreC (HBeAg precursor) genetic ablation leads to reduced viral replication both in vitro and in vivo. Furthermore, PreC impedes the proteasomal degradation of HBV polymerase, promoting viral replication. We discovered that PreC interacts with SUV39H1, a histone methyltransferase, resulting in a reduction in the expression of Cdt2, an adaptor protein of CRL4 E3 ligase targeting HBV polymerase. SUV39H1 induces H3K9 trimethylation of the Cdt2 promoter in a PreC-induced manner. CRISPR-mediated knockout of endogenous SUV39H1 or pharmaceutical inhibition of SUV39H1 decreases HBV loads in the mouse liver. Additionally, genetic depletion of Cdt2 in the mouse liver abrogates PreC-related HBV replication. Interestingly, a negative correlation of intrahepatic Cdt2 with serum HBeAg and HBV DNA load was observed in CHB patient samples. Our study thus sheds light on the mechanistic role of PreC in inducing HBV replication and identifies potential therapeutic targets for HBV treatment.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Animals , Mice , Humans , Hepatitis B virus/genetics , Hepatitis B e Antigens , DNA, Viral , Virus Replication , Methyltransferases , Repressor Proteins/genetics
2.
Sci Bull (Beijing) ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38519399

ABSTRACT

Adavosertib (ADA) is a WEE1 inhibitor that exhibits a synthetic lethal effect on p53-mutated gallbladder cancer (GBC). However, drug resistance due to DNA damage response compensation pathways and high toxicity limits further applications. Herein, estrone-targeted ADA-encapsulated metal-organic frameworks (ADA@MOF-EPL) for GBC synthetic lethal treatment by inducing conditional factors are developed. The high expression of estrogen receptors in GBC enables ADA@MOF-EPL to quickly enter and accumulate near the cell nucleus through estrone-mediated endocytosis and release ADA to inhibit WEE1 upon entering the acidic tumor microenvironment. Ultrasound irradiation induces ADA@MOF-EPL to generate reactive oxygen species (ROS), which leads to a further increase in DNA damage, resulting in a higher sensitivity of p53-mutated cancer cells to WEE1 inhibitor and promoting cell death via conditional synthetic lethality. The conditional factor induced by ADA@MOF-EPL further enhances the antitumor efficacy while significantly reducing systemic toxicity. Moreover, ADA@MOF-EPL demonstrates similar antitumor abilities in other p53-mutated solid tumors, revealing its potential as a broad-spectrum antitumor drug.

3.
Viruses ; 15(10)2023 10 10.
Article in English | MEDLINE | ID: mdl-37896849

ABSTRACT

Single or mixed infections of multiple pathogens such as avian hepatitis E virus (aHEV) and avian leukosis virus subgroup J (ALV-J) have been detected in numerous laying hens with severe liver injury in China. Thus, aHEV and immunosuppressive viruses are speculated to cause co-infections. In this study, co-infection with aHEV and fowl adenovirus (FAdV) was confirmed by nested RT-PCR and recombinase-aided amplification combined with gene sequencing in two flocks with severe liver injury. Subsequently, the two reference strains, aHEV and FAdV-4, were inoculated into LMH cells to identify their co-infection potential. Confocal microscopy revealed aHEV and FAdV-4 co-infected LMH cells. In addition, the replication dynamics of aHEV and FAdV-4 along with the expression levels of immuno-cytokines were measured. The results indicated colocalization of aHEV and FAdV-4 and inhibition of viral replication in LMH cells. The transcription levels of MDA5, Mx, OASL, and IFN-α were significantly upregulated in LMH cells, whereas those of immune-related factors induced by FAdV-4 were downregulated upon FAdV-4 and aHEV co-infection. These results confirmed the co-infection of aHEV and FAdV-4 in vitro and prompted the antagonistic pathogenic effects of FAdV-4 and aHEV, thereby providing novel insights into the counterbalancing effects of these viruses.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Coinfection , Hepevirus , Poultry Diseases , Animals , Female , Chickens , Adenoviridae Infections/veterinary , Cytokines , Adenoviridae/genetics , Cell Proliferation
4.
Proc Natl Acad Sci U S A ; 120(30): e2220296120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459535

ABSTRACT

Metastasis, especially intrahepatic, is a major challenge for hepatocellular carcinoma (HCC) treatment. Cytoskeleton remodeling has been identified as a vital process mediating intrahepatic spreading. Previously, we reported that HCC tumor adhesion and invasion were modulated by circular RNA (circRNA), which has emerged as an important regulator of various cellular processes and has been implicated in cancer progression. Here, we uncovered a nuclear circRNA, circASH2, which is preferentially lost in HCC tissues and inhibits HCC metastasis by altering tumor cytoskeleton structure. Tropomyosin 4 (TPM4), a critical binding protein of actin, turned out to be the major target of circASH2 and was posttranscriptionally suppressed. Such regulation is based on messenger RNA (mRNA)/precursormRNA splicing and degradation process. Furthermore, liquid-liquid phase separation of nuclear Y-box binding protein 1 (YBX1) enhanced by circASH2 augments TPM4 transcripts decay. Together, our data have revealed a tumor-suppressive circRNA and, more importantly, uncovered a fine regulation mechanism for HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger , Cell Proliferation/genetics , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Cell Line, Tumor , Y-Box-Binding Protein 1/genetics
5.
J Med Virol ; 95(3): e28657, 2023 03.
Article in English | MEDLINE | ID: mdl-36912367

ABSTRACT

Novel immune escape variants have emerged as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide. Many of the variants cause breakthrough infections in vaccinated populations, posing great challenges to current antiviral strategies targeting the immunodominance of the receptor-binding domain within the spike protein. Here, we found that a novel broadly neutralizing monoclonal antibody (mAb), G5, provided efficient protection against SARS-CoV-2 variants of concern (VOCs) in vitro and in vivo. A single dose of mAb G5 could significantly inhibit the viral burden in mice challenged with the mouse-adapted SARS-CoV-2 or SARS-CoV-2 Omicron BA.1 variant, as well as the body weight loss and cytokine release induced by mouse-adapted SARS-CoV-2. The refined epitope recognized by mAb G5 was identified as 1148 FKEELDKYF1156 in the stem helix of subunit S2. In addition, a human-mouse chimeric mAb was generated based on the variable region of heavy chain and VL genes of mAb G5. Our study provides a broad antibody drug candidate against SARS-CoV-2 VOCs and reveals a novel target for developing pan-SARS-CoV-2 vaccines.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , Animals , Mice , Antibodies, Monoclonal/therapeutic use , COVID-19 Vaccines , SARS-CoV-2/genetics , Immunosuppressive Agents , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use
6.
EMBO Rep ; 24(4): e56325, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36794620

ABSTRACT

The frequency of p53 mutations in colorectal cancer (CRC) is approximately 40-50%. A variety of therapies are being developed to target tumors expressing mutant p53. However, potential therapeutic targets for CRC expressing wild-type p53 are rare. In this study, we show that METTL14 is transcriptionally activated by wild-type p53 and suppresses tumor growth only in p53-wild-type (p53-WT) CRC cells. METTL14 deletion promotes both AOM/DSS and AOM-induced CRC growth in mouse models with the intestinal epithelial cell-specific knockout of METTL14. Additionally, METTL14 restrains aerobic glycolysis in p53-WT CRC, by repressing SLC2A3 and PGAM1 expression via selectively promoting m6 A-YTHDF2-dependent pri-miR-6769b/pri-miR-499a processing. Biosynthetic mature miR-6769b-3p and miR-499a-3p decrease SLC2A3 and PGAM1 levels, respectively, and suppress malignant phenotypes. Clinically, METTL14 only acts as a beneficial prognosis factor for the overall survival of p53-WT CRC patients. These results uncover a new mechanism for METTL14 inactivation in tumors and, most importantly, reveal that the activation of METTL14 is a critical mechanism for p53-dependent cancer growth inhibition, which could be targeted for therapy in p53-WT CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Animals , Mice , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , MicroRNAs/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
7.
Heliyon ; 9(2): e13492, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36846688

ABSTRACT

Sustainable development of rural has become an essential global plan. Habitat sustainability assessment of rural is a critical management tool to grasp the development status of rural in real-time and enable dynamic adjustment of policies. This paper combines the 2030 Sustainable Development Goals (SDGs) with the entropy weight method, TOPSIS, and grey correlation analysis to construct a multi-criteria decision-making (MCDM) evaluation model, which is finally used to assess the sustainability of the rural human settlement environment. Finally, this paper uses the rural of 11 prefecture-level cities in Zhejiang Province in 2021 as a case study for rural human settlement environment sustainability evaluation. The results show that the overall rural human settlement environment sustainability level in Zhejiang Province is better than in most regions in China. Hangzhou has the best rural human settlement environment sustainability, and Zhoushan has the worst. In addition, the production environment factor is the critical factor that constrains sustainability. The study results provide references and guidance to policymakers for sustainable development initiatives.

9.
Front Microbiol ; 14: 1320264, 2023.
Article in English | MEDLINE | ID: mdl-38235429

ABSTRACT

The research aimed to study an Avian polyomavirus strain that was isolated in Shandong, China. To study the pathogenicity of APV in SPF chickens, and provide references for epidemiological research and disease prevention and control of APV. The genetic characterization of APV strain (termed APV-20) was analyzed and the pathogenicity of APV was investigated from two aspects: different age SPF chickens, and different infection doses. The results revealed that the APV-20 exhibits a nucleotide homology of 99% with the other three APV strains, and the evolution of APV In China was slow. In addition, the APV-20 infection in chickens caused depression, drowsiness, clustering, and fluffy feathers, but no deaths occurred in the infected chickens. The main manifestations of necropsy, and Hematoxylin and Eosin staining (HE) showed that one-day-old SPF chickens were the most susceptible, and there was a positive correlation between viral load and infection dose in the same tissue. This study showed that SPF chickens were susceptible to APV, and an experimental animal model was established. This study can provide a reference for the pathogenic mechanism of immune prevention and control of APV.

10.
Commun Biol ; 5(1): 1248, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376440

ABSTRACT

To explore highly selective targeting molecules of colorectal cancer (CRC) is a challenge. We previously identified a twelve-amino acid peptide (LPKTVSSDMSLN, namely P-LPK) by phage display technique which may specifically binds to CRC cells. Here we show that P-LPK selectively bind to a panel of human CRC cell lines and CRC tissues. In vivo, Gallium-68 (68Ga) labeled P-LPK exhibits selective accumulation at tumor sites. Then, we designed a peptide-conjugated drug comprising P-LPK and camptothecin (CPT) (namely P-LPK-CPT), and found P-LPK-CPT significantly inhibits tumor growth with fewer side effects in vitro and in vivo. Furthermore, through co-immunoprecipitation and molecular docking experiment, the glutamine transporter solute carrier 1 family member 5 (SLC1A5) was identified as the possible target of P-LPK. The binding ability of P-LPK and SLC1A5 is verified by surface plasmon resonance and immunofluorescence. Taken together, P-LPK-CPT is highly effective for CRC and deserves further development as a promising anti-tumor therapeutic for CRC, especially SLC1A5-high expression type.


Subject(s)
Camptothecin , Colorectal Neoplasms , Humans , Camptothecin/pharmacology , Camptothecin/chemistry , Molecular Docking Simulation , Peptides/metabolism , Glutamine/metabolism , Colorectal Neoplasms/drug therapy , Minor Histocompatibility Antigens/metabolism , Amino Acid Transport System ASC/metabolism
11.
Front Bioeng Biotechnol ; 10: 938662, 2022.
Article in English | MEDLINE | ID: mdl-36246349

ABSTRACT

Chemotherapy is one of the main treatments for colorectal cancer, but systemic toxicity severely limits its clinical use. Packaging hydrophobic chemotherapeutic drugs in targeted nanoparticles greatly improve their efficacy and reduce side effects. We previously identified a novel colorectal cancer specific binding peptide P-LPK (LPKTVSSDMSLN) from phage display peptide library. Here we designed a self-assembled paclitaxel (PTX)-loaded nanoparticle (LPK-PTX NPs). LPK-PTX NPs displayed a superior intracellular internalization and improved tumor cytotoxicity in vitro. Cy5.5-labeled LPK-PTX NPs showed much higher tumor accumulation in colorectal cancer-bearing mice. Furthermore, LPK-PTX NPs exhibit enhanced antitumor activity and decreased systemic toxicity in colorectal cancer patient-derived xenografts (PDX) model. The excellent in vitro and in vivo antitumor efficacy proves the improved targeting drug delivery, suggesting that peptide P-LPK has potential to provide a novel approach for enhanced drug delivery with negligible systemic toxicity.

12.
Hepatol Commun ; 6(9): 2340-2353, 2022 09.
Article in English | MEDLINE | ID: mdl-35509206

ABSTRACT

Pyroptosis is a kind of programmed cell death primarily mediated by gasdermin D (GSDMD) and shown to regulate multiple diseases. However, its contribution to liver regeneration, a fine-tuned tissue repair process mediated primarily by hepatocytes after mass loss, remains unclear. Herein, we found that caspase-11/GSDMD-mediated pyroptosis was activated in regenerating liver after 70% partial hepatectomy. Impeding pyroptosis by deleting GSDMD significantly reduced liver injury and accelerated liver regeneration. Mechanistically, GSDMD deficiency up-regulates the activation of hepatocyte growth factor/c-Met and epidermal growth factor receptor mitogenic pathways at the initiation phase. Moreover, activin A and glypican 3 (GPC3), two terminators of liver regeneration, were inhibited when GSDMD was absent. In vitro study suggested the expressions of activin A and GPC3 were induced by interleukin (IL)-1ß and IL-18, whose maturations were regulated by GSDMD-mediated pyroptosis. Similarly, pharmacologically inhibiting GSDMD recapitulates these phenomena. Conclusion: This study characterizes the role of GSDMD-mediated pyroptosis in liver regeneration and lays the foundation for enhancing liver restoration by targeting GSDMD in liver patients with impaired regenerative capacity.


Subject(s)
Focal Nodular Hyperplasia , Liver Regeneration , Pyroptosis , Animals , Glypicans/metabolism , Hepatectomy , Intracellular Signaling Peptides and Proteins/genetics , Liver Regeneration/genetics , Liver Regeneration/physiology , Mice , Mice, Inbred C57BL , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Pyroptosis/physiology
13.
World J Gastroenterol ; 28(12): 1239-1256, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35431512

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic disease with recurrent intestinal inflammation. Although the exact etiology of IBD remains unknown, the accepted hypothesis of the pathogenesis to date is that abnormal immune responses to the gut microbiota are caused by environmental factors. The role of the gut microbiota, particularly the bidirectional interaction between the brain and gut microbiota, has gradually attracted more attention. AIM: To investigate the potential effect of spinal anesthesia on dextran sodium sulfate (DSS)-induced colitis mice and to detect whether alterations in the gut microbiota would be crucial for IBD. METHODS: A DSS-induced colitis mice model was established. Spinal anesthesia was administered on colitis mice in combination with the methods of cohousing and fecal microbiota transplantation (FMT) to explore the role of spinal anesthesia in IBD and identify the potential mechanisms involved. RESULTS: We demonstrated that spinal anesthesia had protective effects against DSS-induced colitis by alleviating clinical symptoms, including reduced body weight loss, decreased disease activity index score, improved intestinal permeability and colonic morphology, decreased inflammatory response, and enhanced intestinal barrier functions. Moreover, spinal anesthesia significantly increased the abundance of Bacteroidetes, which was suppressed in the gut microbiota of colitis mice. Interestingly, cohousing with spinal anesthetic mice and FMT from spinal anesthetic mice can also alleviate DSS-induced colitis by upregulating the abundance of Bacteroidetes. We further showed that spinal anesthesia can reduce the increase in noradrenaline levels induced by DSS, which might affect the gut microbiota. CONCLUSION: These data suggest that microbiota dysbiosis may contribute to IBD and provide evidence supporting the protective effects of spinal anesthesia on IBD by modulating the gut microbiota, which highlights a novel approach for the treatment of IBD.


Subject(s)
Anesthesia, Spinal , Anesthetics , Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Anesthesia, Spinal/adverse effects , Anesthetics/adverse effects , Animals , Bacteroidetes , Colitis/drug therapy , Colitis/therapy , Colon , Dextran Sulfate/toxicity , Disease Models, Animal , Mice , Mice, Inbred C57BL , Sulfates
14.
Gastroenterology ; 162(7): 1933-1947.e18, 2022 06.
Article in English | MEDLINE | ID: mdl-35167866

ABSTRACT

BACKGROUND & AIMS: Most patients with gastric cancer (GCa) are diagnosed at an advanced stage. We aimed to investigate novel fecal signatures for clinical application in early diagnosis of GCa. METHODS: This was an observational study that included 1043 patients from 10 hospitals in China. In the discovery cohort, 16S ribosomal RNA gene analysis was performed in paired samples (tissues and feces) from patients with GCa and chronic gastritis (ChG) to determine differential abundant microbes. Their relative abundances were detected using quantitative real-time polymerase chain reaction to test them as bacterial candidates in the training cohort. Their diagnostic efficacy was validated in the validation cohort. RESULTS: Significant enrichments of Streptococcus anginosus (Sa) and Streptococcus constellatus (Sc) in GCa tumor tissues (P < .05) and feces (P < .0001) were observed in patients with intraepithelial neoplasia, early and advanced GCa. Either the signature parallel test Sa∪Sc or single signature Sa/Sc demonstrated superior sensitivity (Sa: 75.6% vs 72.1%, P < .05; Sc: 84.4% vs 64.0%, P < .001; and Sa∪Sc: 91.1% vs 81.4%, P < .01) in detecting early GCa compared with advanced GCa (specificity: Sa: 84.0% vs 83.9%, Sc: 70.4% vs 82.3%, and Sa∪Sc: 64.0% vs 73.4%). Fecal signature Sa∪Sc outperformed Sa∪CEA/Sc∪CEA in the discrimination of advanced GCa (sensitivity: 81.4% vs 74.2% and 81.4% vs 72.3%, P < .01; specificity: 73.4% vs 81.0 % and 73.4% vs 81.0%). The performance of Sa∪Sc in the diagnosis of both early and advanced GCa was verified in the validation cohort. CONCLUSION: Fecal Sa and Sc are noninvasive, accurate, and sensitive signatures for early warning in GCa. (ClinicalTrials.gov, Number: NCT04638959).


Subject(s)
Stomach Neoplasms , Streptococcus constellatus , Early Detection of Cancer , Feces , Humans , Stomach Neoplasms/diagnosis , Streptococcus anginosus/genetics , Streptococcus constellatus/genetics
15.
Adv Sci (Weinh) ; 9(7): e2103895, 2022 03.
Article in English | MEDLINE | ID: mdl-35068071

ABSTRACT

Gallbladder cancer (GBC) is a rare but the most malignant type of biliary tract tumor. It is usually diagnosed at an advanced stage and conventional treatments are unsatisfactory. As a proteasome inhibitor, bortezomib (BTZ) exhibits excellent antitumor ability in GBC. However, the long-term treatment efficacy is limited by its resistance, poor stability, and high toxicity. Herein, BTZ-encapsulated pH-responsive copolymeric nanoparticles with estrone (ES-NP(BTZ; Ce6) ) for GBC-specific targeted therapy is reported. Due to the high estrogen receptor expression in GBC, ES-NP(BTZ; Ce6) can rapidly enter the cells and accumulate near the nucleus via ES-mediated endocytosis. Under acidic tumor microenvironment (TME) and 808 nm laser irradiation, BTZ is released and ROS is generated by Ce6 to destroy the "bounce-back" response pathway proteins, such as DDI2 and p97, which can effectively inhibit proteasomes and increase apoptosis. Compared to the traditional treatment using BTZ monotherapy, ES-NP(BTZ; Ce6) can significantly impede disease progression at lower BTZ concentrations and improve its resistance. Moreover, ES-NP(BTZ; Ce6) demonstrates similar antitumor abilities in patient-derived xenograft animal models and five other types of solid tumor cells, revealing its potential as a broad-spectrum antitumor formulation.


Subject(s)
Antineoplastic Agents , Gallbladder Neoplasms , Nanoparticles , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bortezomib/pharmacology , Bortezomib/therapeutic use , Gallbladder Neoplasms/drug therapy , Humans , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Tumor Microenvironment
16.
Poult Sci ; 101(1): 101540, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34823181

ABSTRACT

Group-I Fowl adenovirus (FAdV) is still widespread in China's chicken farms, leading to huge economic losses. The traditional PCR method, which can detect all serotypes at the same time, is not sensitive enough to obtain accurate results, especially in some samples containing only a low titer of virus, such as contaminated live vaccine. In order to solve this problem, this study developed a dot blot assay based on the above PCR method. A total of 6 probes targeting the conserved region of FAdV were designed and systematically optimized through sensitivity, accuracy, and stability analyses. Results showed that it is not only suitable for 12 serotypes, but also effectively improve the sensitivity, which increased more than 100 times in comparison with PCR assay. Moreover, this sensitivity was increased 100 times when detecting contaminated live vaccine samples, showing the great prospect of this method in daily monitoring.


Subject(s)
Adenoviridae , Chickens , Animals , Polymerase Chain Reaction/veterinary
17.
Int J Biol Sci ; 17(13): 3622-3633, 2021.
Article in English | MEDLINE | ID: mdl-34512170

ABSTRACT

New-onset diabetes mellitus has a rough correlation with pancreatic cancer (PaC), but the underlying mechanism remains unclear. This study aimed to explore the exosomal microRNAs and their potential role in PaC-induced ß-cell dysfunction. The pancreatic ß cells were treated with isolated exosomes from PaC cell lines, SW1990 and BxPC-3, before measuring the glucose-stimulated insulin secretion (GSIS), validating that SW1990 and BxPC-3 might disrupt GSIS of both ß cell line MIN6 and primary mouse pancreatic islets. The difference in expression profiles between exosomes and exosome-free medium of PaC cell lines was further defined, revealing that miR-19a secreted by PaC cells might be an important signaling molecule in this process. Furthermore, adenylyl cyclase 1 (Adcy1) and exchange protein directly activated by cAMP 2 (Epac2) were verified as the direct targets of exogenous miR-19a, which was involved in insulin secretion. These results indicated that exosomes might be an important mediator in the pathogenesis of PaC-DM, and miR-19a might be the effector molecule. The findings shed light on the pathogenesis of PaC-DM.


Subject(s)
Adenylyl Cyclases/metabolism , Exosomes/metabolism , Guanine Nucleotide Exchange Factors/metabolism , MicroRNAs/metabolism , Pancreatic Neoplasms/metabolism , Animals , Cell Line, Tumor , Humans , Insulin Secretion , Insulin-Secreting Cells/physiology , Pancreatic Neoplasms/physiopathology
18.
Cell Death Differ ; 28(11): 3105-3124, 2021 11.
Article in English | MEDLINE | ID: mdl-34021267

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. It thrives in a malnourished environment; however, little is known about the mechanisms by which PDAC cells actively promote aerobic glycolysis to maintain their metabolic needs. Gene Expression Omnibus (GEO) was used to identify differentially expressed miRNAs. The expression pattern of miR-30d in normal and PDAC tissues was studied by in situ hybridization. The role of miR-30d/RUNX1 in vitro and in vivo was evaluated by CCK8 assay and clonogenic formation as well as transwell experiment, subcutaneous xenograft model and liver metastasis model, respectively. Glucose uptake, ATP and lactate production were tested to study the regulatory effect of miR-30d/RUNX1 on aerobic glycolysis in PDAC cells. Quantitative real-time PCR, western blot, Chip assay, promoter luciferase activity, RIP, MeRIP, and RNA stability assay were used to explore the molecular mechanism of YTHDC1/miR-30d/RUNX1 in PDAC. Here, we discover that miR-30d expression was remarkably decreased in PDAC tissues and associated with good prognosis, contributed to the suppression of tumor growth and metastasis, and attenuation of Warburg effect. Mechanistically, the m6A reader YTHDC1 facilitated the biogenesis of mature miR-30d via m6A-mediated regulation of mRNA stability. Then, miR-30d inhibited aerobic glycolysis through regulating SLC2A1 and HK1 expression by directly targeting the transcription factor RUNX1, which bound to the promoters of the SLC2A1 and HK1 genes. Moreover, miR-30d was clinically inversely correlated with RUNX1, SLC2A1 and HK1, which function as adverse prognosis factors for overall survival in PDAC tissues. Overall, we demonstrated that miR-30d is a functional and clinical tumor-suppressive gene in PDAC. Our findings further uncover that miR-30d is a novel target for YTHDC1 through m6A modification, and miR-30d represses pancreatic tumorigenesis via suppressing aerobic glycolysis.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Core Binding Factor Alpha 2 Subunit/genetics , MicroRNAs/metabolism , Nerve Tissue Proteins/metabolism , RNA Splicing Factors/metabolism , Adenocarcinoma/pathology , Animals , Carcinogenesis , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Female , Humans , Mice , Mice, Nude , Prognosis , Warburg Effect, Oncologic
19.
Biomaterials ; 274: 120870, 2021 07.
Article in English | MEDLINE | ID: mdl-34020268

ABSTRACT

Photodynamic therapy (PDT) is a promising noninvasive treatment option for patients suffering from superficial tumors, such as oral cancer. However, for photosensitizers (PSs), it remains a grand challenge to simultaneously excel in all the key performance indicators including effective singlet oxygen (1O2) generation under clinical laser, specific targeting function and stable far-red (FR)/near-infrared (NIR) emission with low dark toxicity. In addition, traditional PS nanoparticles (NPs) for clinical use suffer from quenched fluorescence and reduced 1O2 production caused by molecular aggregation. To address these issues, AIEPS5 with aggregation-induced FR/NIR emission and effective 1O2 generation under 532 nm laser irradiation is designed by precise optimization of the chemical structure. By attaching a polyethylene glycol (PEG) chain onto AIEPS5, the yielded amphiphilic AIEPS5-PEG2000 can spontaneously self-assemble into water dispersible NPs, which are further endowed with targeted delivery function via the decoration of anti-Her-2 nanobody (NB). The bespoke AIEPS5-NPs-NB exhibit effective 1O2 generation capability, bright FR/NIR emission centered at 680 nm, and negligible dark toxicity, which outperform Heimbofen, a clinically approved PS in PDT using a patient-derived tumor xenograft model.


Subject(s)
Mouth Neoplasms , Nanoparticles , Photochemotherapy , Heterografts , Humans , Mouth Neoplasms/drug therapy , Photosensitizing Agents
20.
Sci Adv ; 7(13)2021 03.
Article in English | MEDLINE | ID: mdl-33762338

ABSTRACT

Circular RNAs (circRNAs) have emerged as important regulators of various cellular processes and have been implicated in cancer. Previously, we reported the discovery of several dysregulated circRNAs including circPABPC1 (polyadenylate-binding protein 1) in human hepatocellular carcinoma (HCC), although their roles in HCC development remained unclear. Here, we show that circPABPC1 is preferentially lost in tumor cells from clinical samples and inhibits both intrahepatic and distant metastases in a mouse xenograft model. This tumor-suppressive function of circPABPC1 can be attributed to its inhibition of cell adhesion and migration through down-regulating a key member of the integrin family, ITGB1 (ß1 integrin). Mass spectrometry and biochemical evidence demonstrate that circPABPC1 directly links ITGB1 to the 26S proteasome for degradation in a ubiquitination-independent manner. Our data have revealed an uncanonical route for integrin turnover and a previously unidentified mode of action for circRNAs in HCC that can be harnessed for anticancer treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Integrins/genetics , Integrins/metabolism , Liver Neoplasms/pathology , Mice , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , RNA, Circular/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...